DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters.
نویسندگان
چکیده
DL-threo-beta-Benzyloxyaspartate (DL-TBOA), a novel derivative of DL-threo-beta-hydroxyaspartate, was synthesized and examined as an inhibitor of sodium-dependent glutamate/aspartate (excitatory amino acid) transporters. DL-TBOA inhibited the uptake of [14C]glutamate in COS-1 cells expressing the human excitatory amino acid transporter-1 (EAAT1) (Ki = 42 microM) with almost the same potency as DL-threo-beta-hydroxyaspartate (Ki = 58 microM). With regard to the human excitatory amino acid transporter-2 (EAAT2), the inhibitory effect of DL-TBOA (Ki = 5.7 microM) was much more potent than that of dihydrokainate (Ki = 79 microM), which is well known as a selective blocker of this subtype. Electrophysiologically, DL-TBOA induced no detectable inward currents in Xenopus laevis oocytes expressing human EAAT1 or EAAT2. However, it significantly reduced the glutamate-induced currents, indicating the prevention of transport. The dose-response curve of glutamate was shifted by adding DL-TBOA without a significant change in the maximum current. The Kb values for human EAAT1 and EAAT2 expressed in X. laevis oocytes were 9.0 microM and 116 nM, respectively. These results demonstrated that DL-TBOA is, so far, the most potent competitive blocker of glutamate transporters. DL-TBOA did not show any significant effects on either the ionotropic or metabotropic glutamate receptors. Moreover, DL-TBOA is chemically much more stable than its benzoyl analog, a previously reported blocker of excitatory amino acid transporters; therefore, DL-TBOA should be a useful tool for investigating the physiological roles of transporters.
منابع مشابه
Characterization of novel L-threo-beta-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters.
Nontransportable blockers of the glutamate transporters are important tools for investigating mechanisms of synaptic transmission. DL-threo-beta-Benzyloxyaspartate (DL-TBOA) is a potent blocker of all subtypes of the excitatory amino acid transporters (EAATs). We characterized novel L-TBOA analogs possessing a substituent on their respective benzene rings. The analogs significantly inhibited la...
متن کاملChemoenzymatic Synthesis of ortho-, meta-, and para-Substituted Derivatives of l-threo-3-Benzyloxyaspartate, An Important Glutamate Transporter Blocker
A simple, three-step chemoenzymatic synthesis of l-threo-3-benzyloxyaspartate (l-TBOA), as well as l-TBOA derivatives with F, CF3, and CH3 substituents at the aromatic ring, starting from dimethyl acetylenedicarboxylate was investigated. These chiral amino acids, which are extremely difficult to prepare by chemical synthesis, form an important class of inhibitors of excitatory amino acid transp...
متن کاملDL-threo-b-Benzyloxyaspartate, A Potent Blocker of Excitatory Amino Acid Transporters
DL-threo-b-Benzyloxyaspartate (DL-TBOA), a novel derivative of DL-threo-b-hydroxyaspartate, was synthesized and examined as an inhibitor of sodium-dependent glutamate/aspartate (excitatory amino acid) transporters. DL-TBOA inhibited the uptake of [C]glutamate in COS-1 cells expressing the human excitatory amino acid transporter-1 (EAAT1) (Ki 5 42 mM) with almost the same potency as DL-threo-b-h...
متن کاملConcise Asymmetric Synthesis and Pharmacological Characterization of All Stereoisomers of Glutamate Transporter Inhibitor TFB-TBOA and Synthesis of EAAT Photoaffinity Probes.
Glutamate is the major excitatory neurotransmitter in the mammalian brain. Its rapid clearance after the release into the synaptic cleft is vital in order to avoid toxic effects and is ensured by several transmembrane transport proteins, so-called excitatory amino acid transporters (EAATs). Impairment of glutamate removal has been linked to several neurodegenerative diseases and EAATs have ther...
متن کاملInhibition of glutamate transporters increases the minimum alveolar concentration for isoflurane in rats.
BACKGROUND Glutamate transporters [also named excitatory amino acid transporters (EAATs)] bind and take up extracellular glutamate, a major excitatory neurotransmitter, and can regulate glutamatergic neurotransmission in synapses. As anaesthesia is proposed to be induced by enhancing inhibitory neurotransmission, inhibiting excitatory neurotransmission, or both we hypothesize that inhibition of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 1998